Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.01.02.573936

ABSTRACT

Patients present a wide range of clinical severities in response SARS-CoV-2 infection, but the underlying molecular and cellular reasons why clinical outcomes vary so greatly within the population remains unknown. Here, we report that negative clinical outcomes in severely ill patients were associated with divergent RNA transcriptome profiles in peripheral immune cells compared with mild cases during the first weeks after disease onset. Protein-protein interaction analysis indicated that early-responding cytotoxic NK cells were associated with an effective clearance of the virus and a less severe outcome. This innate immune response was associated with the activation of select cytokine-cytokine receptor pathways and robust Th1/Th2 cell differentiation profiles. In contrast, severely ill patients exhibited a dysregulation between innate and adaptive responses affiliated with divergent Th1/Th2 profiles and negative outcomes. This knowledge forms the basis of clinical triage that may be used to preemptively detect high-risk patients before life-threatening outcomes ensue. Highlights- Mild COVID-19 patients presented an early compromise with NK cell function, whereas severe patients do so with neutrophil function. - The identified co-expressed genes give insights into a coordinated transcriptional program of NK cell cytotoxic activity being associated with mild patients. - Key checkpoints of NK cell cytotoxicity that were enriched in mild patients include: KLRD1, CD247, and IFNG. - The early innate immune response related to NK cells connects with the Th1/Th2 adaptive immune responses, supporting their relevance in COVID-19 progression.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.14.460338

ABSTRACT

Despite SARS-CoV-2 being a "novel" coronavirus, several studies suggest that detection of anti-spike IgG early in infection may be attributable to the amplification of humoral memory responses against seasonal hCoVs in severe COVID-19 patients. In this study, we examined this concept by characterizing anti-spike IgG from a cohort of non-hospitalized convalescent individuals with a spectrum of COVID-19 severity. We observed that anti-spike IgG levels positively correlated with disease severity, higher IgG cross-reactivity against betacoronaviruses (SARS-CoV-1 and OC43), and higher levels of proinflammatory Fc gamma receptor 2a and 3a (Fc{gamma}R2a & Fc{gamma}R3a) activation. In examining the levels of IgG targeting betacoronavirus conserved and immunodominant epitopes versus disease severity, we observed a positive correlation with the levels of IgG targeting the conserved S2FP region, and an inverse correlation with two conserved epitopes around the heptad repeat (HR) 2 region. In comparing the levels of IgG targeting non-conserved epitopes, we observed that only one of three non-conserved immunodominant epitopes correlated with disease severity. Notably, the levels of IgG targeting the receptor binding domain (RBD) were inversely correlated with severity. Importantly, targeting of the RBD and HR2 regions have both been shown to mediate SARS-CoV-2 neutralization. These findings show that, aside from antibody (Ab) targeting of the RBD region, humoral memory responses against seasonal betacoronaviruses are potentially an important factor in dictating COVID-19 severity, with anti-HR2-dominant Ab profiles representing protective memory responses, while an anti-S2FP dominant Ab profiles indicate deleterious recall responses. Though these profiles are masked in whole antigen profiling, these analyses suggest that distinct Ab memory responses are detectable with epitope targeting analysis. These findings have important implications for predicting severity of SARS-CoV-2 infections (primary and reinfections), and may predict vaccine efficacy in subpopulations with different dominant antibody epitope profiles.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL